

Ultrasound-assisted synthesis of highly disperse zinc sulphide powders

A.-R. TOMŞA^a, E.-J. POPOVICI^a, A. I. CADIŞ^a, M. ŞTEFAN^{a,b}, L. BARBU-TUDORAN^c, S. AŞTİLEAN^d

^a "Raluca Ripan" Institute for Research in Chemistry, Fântânele 30, 400294 Cluj-Napoca, Romania,

^b Faculty of Chemistry and Chemical Engineering "Babeş-Bolyai" University, 400028, Cluj Napoca, Romania

^c Electronical Microscopy Center, Babeş-Bolyai University, 400028 Cluj-Napoca, Romania

^d Faculty of Physics, Babeş-Bolyai University, 400028 Cluj-Napoca, Romania

Highly disperse zinc sulphide powders have been synthesized using an ultrasound-assisted reaction between zinc acetate and thioacetamide in aqueous solution. The synthesis was performed at 70°C, at different pH values, using variable reagent concentrations. All samples were characterized by infrared absorption spectroscopy (FT-IR), thermal analysis (TGA-SDTA), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). A correlation between the preparation conditions and zinc sulphide characteristics was established.

(Received February 25, 2008; accepted August 14, 2008)

Keywords: Zinc sulphide, Ultrasound, SEM, Highly disperse powders

1. Introduction

Recently, II-VI semiconductor nanoparticles have been the subject of considerable interest because of their size-dependent (and thus tunable) photo- and electroluminescence properties as well as their promising applications in optoelectronics. Among all II-VI semiconductors, ZnS is a rather interesting material because it has a high exciton binding energy (38 meV) and a wide band gap (3.7 eV), and has found many applications in various fields such as phosphors [1], solar cells [2, 3], infrared windows [4, 5], electroluminescence [6-8], ceramics [9-11] and photocatalysis [12]. Controlling the size of ZnS crystals may further lead to novel properties due to the quantum confinement effect.

ZnS nanoparticles can be prepared by a variety of methods, including sputtering [13], co-evaporation [14], sol-gel method [15-17], solid state reaction [18], gas-phase condensation [19], liquid-phase chemical precipitation [20], ion complex transformation [21], radiolysis [22], microwave irradiation [23-25], ultrasound irradiation [26] and biological synthesis [27]. From all these works, it has been found that the particle size and the properties of nanoparticles depend strongly on the specific preparation method and the applied experimental conditions.

Ultrasound irradiation has been used extensively to generate novel materials with unusual properties, and they can induce the formation of particles with much smaller size and higher surface area than those reported by other methods [28]. The ultrasound chemical effects arise from acoustic cavitation, that is, the formation, growth and implosive collapse of bubbles in a liquid, which generate a transient temperature of approximately 5000 K, a pressure of approximately 1800 atm and a cooling rate in excess of 1010 K/s [29]. These extreme conditions can drive chemical reactions such as oxidation, reduction, dissolution and decomposition [30], which have been

exploited to prepare nanoscale metals, metal oxides and nanocomposites [31-35]. In this paper, we report a convenient ultrasound assisted synthesis of highly disperse ZnS powders. The synthesized powders were characterized by infrared absorption spectroscopy (FT-IR), thermal analysis (TGA-SDTA), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL).

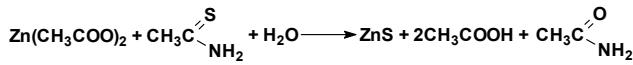
2 Experimental

Zinc acetate, thioacetamide and hydrochloric acid were purchased from Merck and used without further purifications. Isopropanol was purchased from Chimopar and used without further purifications. Deionized water was used in all the synthesis.

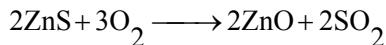
In a typical procedure, a homogeneous aqueous solution was obtained by mixing 0.05 M zinc acetate and 0.05 M thioacetamide (TAA) in a molar ratio between 2:3 and 1:3. The pH of the solution was adjusted to 2 or 3 using 6M HCl. The solution was transferred into a beaker covered with a watch glass, and then sonicated at 70°C, with 35-kHz ultrasonic waves, at 360-kW output power. After 3 h sonication, the reaction mixture was cooled to 10°C and left undisturbed for 24h. The resulting white powder was recovered by centrifugation, washed repeatedly with deionized water and isopropanol and then dried for 2h in vacuum, at 80°C.

A JASCO 610 FTIR spectrophotometer was used to record the IR absorption spectra of the samples pelleted in KBr. A METTLER-TOLEDO TG/SDTA851 thermogravimeter was used for differential thermal analysis (DTA), thermal and differential thermal gravimetry (TG-DTG). The measurements were performed in alumina crucibles, in nitrogen or air flow (20 mL/min), with a heating rate of 5°C/min. The SEM images were obtained with a JEOL-JSM 5510LV electron microscope

using Au-coated powders. The accelerating voltage was 20 kV. Photoluminescence spectra (PL) were registered with JASCO FP-6500 spectrofluorimeter ($\lambda_{\text{exc}}=365$ nm, with correction against MgO (Farbglasfilter WG 320-ReichmannFeinoptik).


3 Results and discussion

Several zinc sulphide samples have been prepared by ultrasounds irradiation of a homogeneous aqueous solution of zinc acetate and thioacetamide (TAA) as the source of sulphide ions (Table 1).


Table 1. Synthesis conditions of some zinc sulphide powders obtained by ultrasonication

Code	Concentration (mol/L)		pH	Molar ratio	Yield %
	Zinc acetate	Thioacetamide			
C04	0.5	0.5	2	1.0:1.5	14.1
Co5	0.5	0.5	3	1.0:1.5	4.3
C06	0.1	0.1	2	1.0:1.5	0.3
C07	0.1	0.1	3	1.0:1.5	0.5
C08	0.5	0.5	2	1.0:3.0	53.1
C09	0.5	0.5	3	1.0:3.0	13.5
C10	0.1	0.1	2	1.0:3.0	20.4
C11	0.1	0.1	3	1.0:3.0	3.6

The chemical process can be described by the following overall chemical equation:

The thermal behavior of C08 sample in the 25-1200°C range with N₂ and air flow respectively is plotted in Fig. 1. Up to about 380°C the TG curves of the sample treated in N₂ and air are very similar. The corresponding three steps weight loss could be assigned to the desorption/elimination of the water and organic contaminants. The DTA curve shows no significant thermal effect for this weight loss. At about 900°C Zinc sulphide sublimation begin. However, the sample treated in air shows a major weight-loss (~15%) accompanied by an exothermal effect between 600-700°C, assigned to the oxidation of ZnS to ZnO according to the following chemical equation:

According to the TG curves (fig. 2), ZnS samples can be divided in two categories:- samples that, up to 1200°C show a weight loss of about 10 %: C08, C10, C11.- samples that, up to 1200°C show a weight-loss of about 15%: C04, C05, C09.

The difference between ZnS samples could be correlated with the contamination level of the particles with different dimensions or surface area and also, with the variable sublimation rate, related with different dispersion degree of powders.

The FT-IR spectra of the samples C04-C11 (fig. 3) show only characteristic bands for the acetate, thioacetamide, acetamide and water contaminants ($\delta(\text{H}_2\text{O}) + \nu(\text{C=O} \text{ acetamide}) + \delta(\text{NH}_2) \sim 1625\text{-}1560 \text{ cm}^{-1}$, $\nu_{\text{as}}(\text{COO}) \sim 1457 \text{ cm}^{-1}$, $\nu_s(\text{COO}) \sim 1404 \text{ cm}^{-1}$, $\rho(\text{CH}_3) + \rho(\text{NH}_2) \sim 1152\text{-}1010 \text{ cm}^{-1}$) [36].

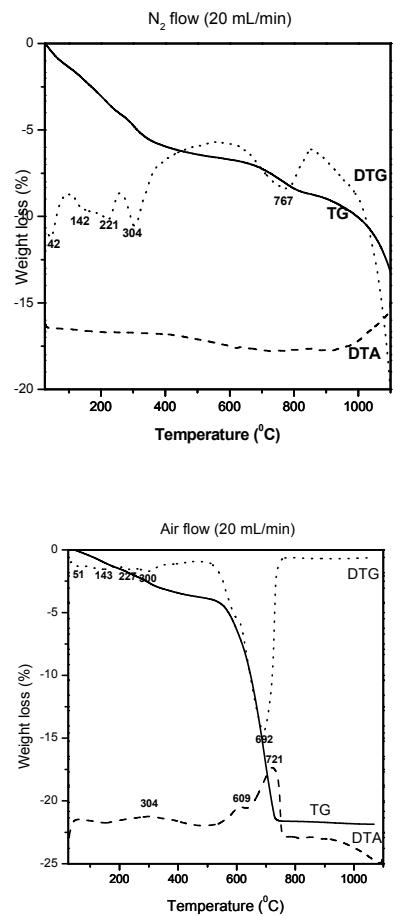


Fig. 1. TG, DTA and DTG curves obtained for the sample C08 treated in N₂ and air.

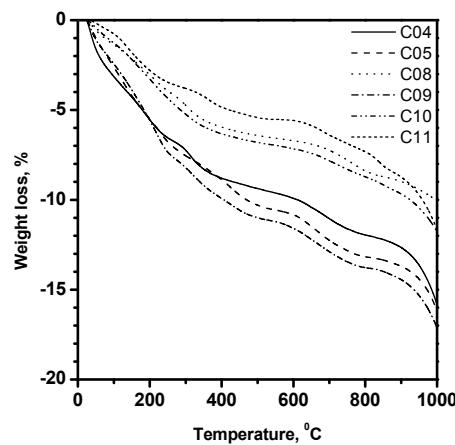


Fig. 2. TG curves of several ZnS samples.

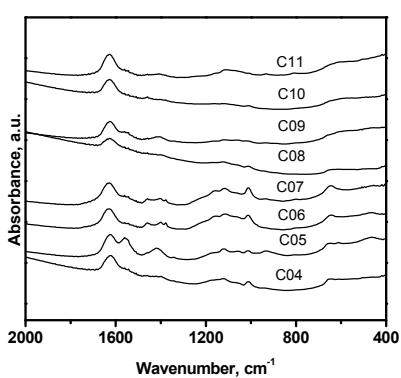


Fig. 3. FT-IR spectra of C04-C11 ZnS samples.

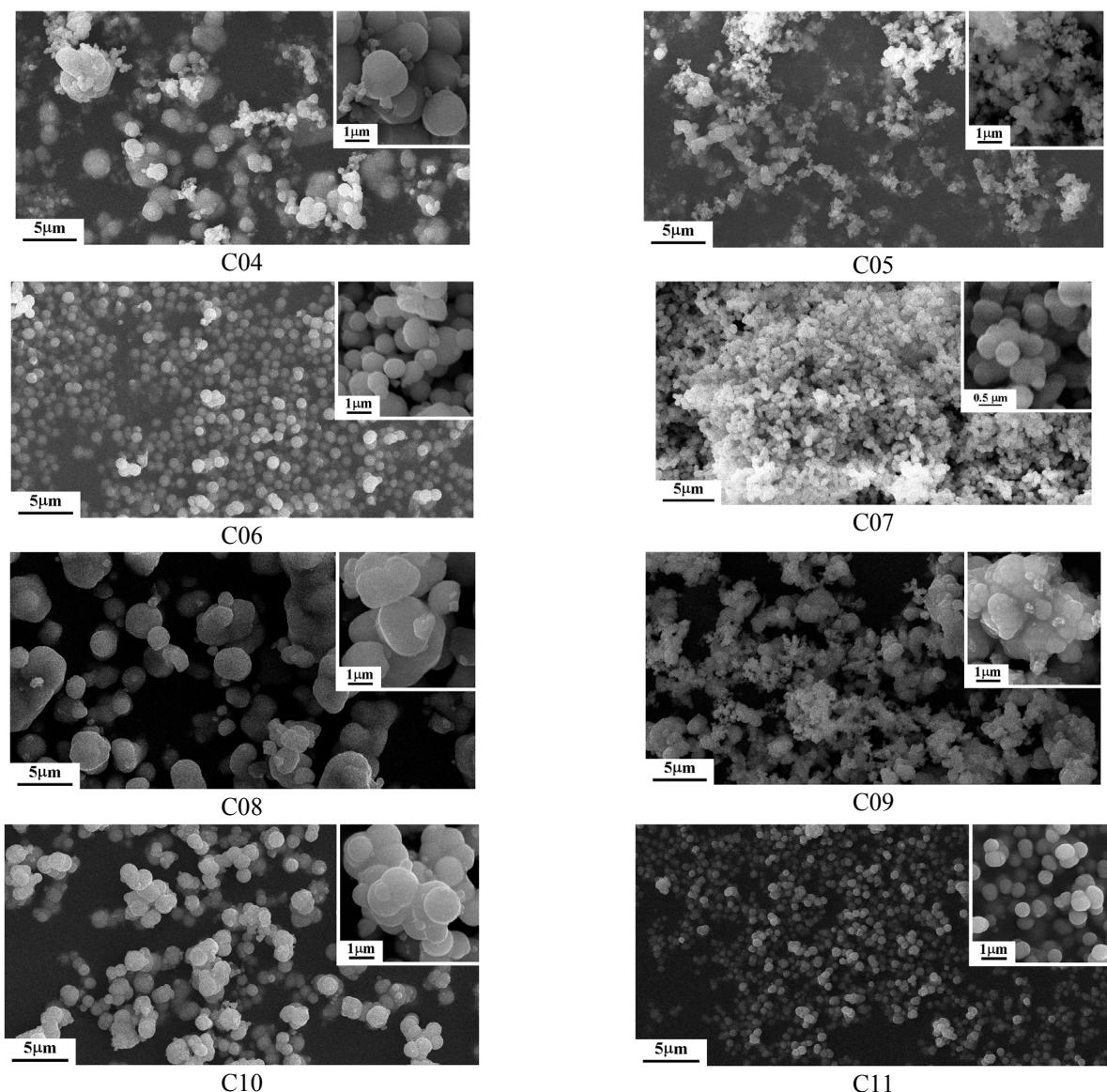


Fig. 4. SEM images of different ZnS samples (C04-C11) obtained in various experimental conditions.

The photoluminescence spectra (fig. 5) show a broad emission band centered at about 535 (C08), 546 (C09), 544 (C04) and 545 nm (C05) respectively. From the

The SEM images of samples C04-C11 are shown in fig. 4. The samples C04 and C08, prepared from 0.5M solutions of zinc acetate and thioacetamide at pH 2, show a broad size distribution ranging from 80 to 3600 nm. The increase of the pH results in a more narrow size distribution as observed for the samples C05 and C09 (100 – 800 nm). The samples prepared in more diluted medium are much more homogenous having most of the particles size of about 500 nm (C06), 300 nm (C07).

symmetry of the spectra it is believed that the emission spectra consist of three overlapped peaks: ~480 nm self-

activated ZnS, ~505 nm oxygen impurities and ~545 nm other impurities.

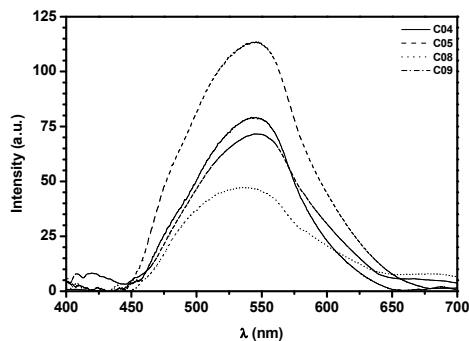


Fig. 5. The PL spectra of some ZnS powder samples obtained in various experimental conditions.

4. Conclusions

There is a strong dependence between experimental conditions and the morphology and size of the ZnS particles. The samples obtained using 0.1 M solutions of zinc acetate and thioacetamide show a narrow size distribution of spherical particles. Increasing the concentration of the reagents results in a broad distribution of size and morphology (spheres and platelets), whereas the increase of the pH results in smaller particles. Further experiments are in progress.

Acknowledgements

Financial support for this study was provided by the Romanian Ministry of Education, Research and Youth (MATNANTEC-CEEX 71/2006, NANOBIOSPEC).

References

- [1] H.W. Leverenz, Luminescence of Solids, Wiley, New York (1950).
- [2] A. Chandra, M. Mishra, Energy Convers. **25**, 387 (1985).
- [3] R. Menner, B. Dimmler, R. H. Mauch, H. W. Schock, J. Cryst. Growth **86**, 906 (1990).
- [4] C. A. Klein, B. DiBenedetto, T. Kohane, Proceedings of the Society of Photo-Optical Instrumentation Engineers, **204**, 85 (1980).
- [5] L. Li, L. Dong, L. Huang, Chin. Optics Lett. **1**, 619 (2003).
- [6] A. Boudghene Stambouli, S. Hamzaoui, M. Bouderbala, O. Kaid Omar, Appl. Energy **64**, 207 (1999).
- [7] Q. Zhai, J. Li, J. S. Lewis, K. A. Waldrip, K. Jones, P. H. Holloway, M. Davidson, N. Evans, Thin Solid Films **414**, 105 (2002).
- [8] S. Yamaga, A. Yoshikawa, H. Kasai, J. Cryst. Growth **86**, 252 (1990).
- [9] E. Carnall Jr., J. Am. Ceram. Soc. **55**, 582 (1972).
- [10] K. Uematsu, K. Sawada, I. Kato, N. Uchida, K. Sato, J. Ceram. Soc. Jpn. **95**, 299 (1980)
- [11] Q. Yitai, S. Yi, X. Yi, C. Qianwang, C. Zuyao, Y. Li, Mater. Res. Bull. **30**, 601 (1995)
- [12] S. Miao, Z. Liu, B. Han, H. Yang, Z. Miao, Z. Sun, J. Colloid Interface Sc. **301**, 116 (2006)
- [13] S.K. Mandal, S. Chaudhuri, A.K. Pal, Thin Solid Films 350 (1992) 209.
- [14] R. Thielsch, T. Böhme, H. Böttcher, Phys. Status Solidi, A **155** (1996) 157.
- [15] B. Bhattacharjee, D. Ganguli, S. Chaudhuri, A.K. Pal, Thin Solid Films **422**, 98 (2002)
- [16] M. Tan, W. Cai, L. Zhang, Appl. Phys. Lett. **71**, 3697 (1997).
- [17] B. Bhattacharjee, D. Ganguli, S. Chaudhuri, A.K. Pal, Mater. Chem. Phys. **78**, 372 (2002).
- [18] P. Balaz, E. Boldizarova, E. Godocikova, J. Briancin, Mater. Lett. **57**, 1585 (2003)
- [19] J.C. Sanchez-Lopez, A. Fernandez, Thin Solid Films **317**, 497 (1998).
- [20] J.F. Suyver, S.F. Wuister, J.J. Kelly, A. Meijerink, Nano Lett. **8**, 429 (2001)
- [21] W.B. Sang, Y.B. Qian, J.H. Min, D.M. Li, L.L. Wang, W.M. Shi, Y.F. Liu, Solid State Commun. **121**, 475 (2002).
- [22] A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, M. Mostafavi, Chem. Phys. Lett. **422**, 25 (2006).
- [23] Y. Jiang, Y.J. Zhu, Chem. Lett. **33**, 1390 (2004).
- [24] Y. Zhao, J.-M. Hong, J.-J. Zhu, J. Cryst. Growth **270**, 438 (2004).
- [25] Y. Ni, G. Yin, J. Hong, Z. Xu, Mater. Res. Bull. **39**, 1967 (2004).
- [26] J.F. Xu, W. Ji, J.Y. Lin, S.H. Tang, Y.W. Du, Appl. Phys., A **66**, 639 (1998).
- [27] H.-J. Bai, Z.-M. Zhang, J. Gong, Biotechnol Lett **28**, 1135 (2006).
- [28] K.S. Suslick, Ultrasound: Its Chemical, Physical and Biological Effects, VCH, Weinheim, Germany (1988).
- [29] K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature **353**, 414 (1991).
- [30] K.S. Suslick, D.A. Hammerton, R.E. Cline, J. Am. Chem. Soc. **108**, 5641 (1986).
- [31] K. Okitsu, Y. Mizukoshi, H. Bandow, Y. Maedu, T. Yamamoto, Y. Nagata, Ultrasonic Sonochemistry **3**, S249 (1996).
- [32] T. Hyeon, M. Fang, K.S. Suslick, J. Am. Chem. Soc. **118**, 5492 (1996).
- [33] N. Arul Dhas, A. Gedanken, Chem. Mater. **9**, 3144 (1997).
- [34] N. Arul Dhas, A. Gedanken, J. Phys. Chem. **101**, 9495 (1997).
- [35] N. Arul Dhas, A. Gedanken, Appl. Phys. Lett. **72**, 2514 (1998).
- [36] N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1964).

*Corresponding author: rtomsa@yahoo.com